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Carbon emissions from the 2023 Canadian 
wildfires

Brendan Byrne1 ✉, Junjie Liu1,2, Kevin W. Bowman1,3, Madeleine Pascolini-Campbell1, 
Abhishek Chatterjee1, Sudhanshu Pandey1, Kazuyuki Miyazaki1, Guido R. van der Werf4, 
Debra Wunch5, Paul O. Wennberg2,6, Coleen M. Roehl2 & Saptarshi Sinha7

The 2023 Canadian forest fires have been extreme in scale and intensity with more 
than seven times the average annual area burned compared to the previous four 
decades1. Here, we quantify the carbon emissions from these fires from May to 
September 2023 on the basis of inverse modelling of satellite carbon monoxide 
observations. We find that the magnitude of the carbon emissions is 647 TgC  
(570–727 TgC), comparable to the annual fossil fuel emissions of large nations,  
with only India, China and the USA releasing more carbon per year2. We find that 
widespread hot–dry weather was a principal driver of fire spread, with 2023 being  
the warmest and driest year since at least 19803. Although temperatures were extreme 
relative to the historical record, climate projections indicate that these temperatures 
are likely to be typical during the 2050s, even under a moderate climate mitigation 
scenario (shared socioeconomic pathway, SSP 2–4.5)4. Such conditions are likely to 
drive increased fire activity and suppress carbon uptake by Canadian forests, adding 
to concerns about the long-term durability of these forests as a carbon sink5–8.

Canadian forests cover a vast area of nearly 362 million ha (ref. 9), 
amounting to 8.5% of the global forested area10. These forests are an 
important sink of carbon, absorbing fossil carbon dioxide (CO2) from 
the atmosphere and slowing the pace of climate warming11,12. However, 
climate change is increasing forest fire activity, acting to suppress the 
carbon uptake capacity of these forests13. Although more frequent fires 
have been widespread, 2023 has seen forest fires on an extreme scale. 
With 15 million ha of Canadian forests burned (about 4% of forest area)1, 
2023 saw more than seven times (8 σ) the average burned area over the 
preceding 40 years (1983–2022 mean, 2.2 million ha; range, 0.2–7.1 mil-
lion ha)1. The adverse societal impacts of these fires are clear: 232,000 
evacuations and poor air quality affecting millions14. However, the 
carbon emissions from the fire events remain uncertain. In this study, 
we quantify these emissions through inverse modelling of satellite 
observations of carbon monoxide (CO). Then, we examine concurrent 
climate anomalies and projected changes in the prevalence of hot–dry 
weather under climate change. Finally, we discuss the implications of 
fires for the Canadian carbon budget.

Fire emissions
Fire carbon emissions can be tracked from space using bottom-up 
and top-down approaches. Bottom-up approaches use satellite 
observations to track fire activity, such as burned area15 or fire radia-
tive power16. Emissions of CO2, CO and other trace gases are then 
estimated by combining the estimates of fire activity with quantities 
such as fuel loads and emission factors. Although these bottom-up 
estimates are continually improving, inventories can vary significantly 

in global and regional trace gas and aerosol emission estimates15,17. 
Top-down approaches provide a method for refining bottom-up 
trace gas emission estimates by optimally scaling emission estimates 
to be consistent with the observed concentrations of trace gases in 
fire plumes. A strength of this approach is that it integrates emis-
sions from both flaming and smouldering combustion to capture net  
emissions.

In this study, we perform top-down estimates of CO emissions from 
the 2023 Canadian fires based on observational constraints from the 
TROPOspheric monitoring instrument (TROPOMI) space-based CO 
retrievals (Fig. 1a,b). These estimates are performed using three differ-
ent bottom-up fire emission inventories: the global fire emissions data-
base (GFED4.1s)15, the global fire assimilation system v.1.2 (GFAS)16 and 
the quick fire emissions dataset v.2.6r1 (QFED)18. For each inversion, 
the combined carbon emissions released as CO and CO2 (CO2 + CO) 
are then estimated using the CO2/CO emission factors from the same 
bottom-up database. The CO2/CO emission ratios can be highly vari-
able, adding uncertainty to our analysis. We incorporate some of this 
uncertainty here as each bottom-up database has different mean emis-
sion ratios for Canadian forests (range, 7.7–10.8 gC of CO2 per gC of 
CO2). Details for these inversions are provided in the methods and  
a description of the inversion results and evaluation of the perfor-
mance of the top-down estimates are provided in Supplementary 
Information sections 1 and 2). We find the top-down estimates are 
relatively insensitive to choices about inversion configuration but do 
show sensitivity to prescribed hydroxyl radical (OH) abundances19,  
which determine the atmospheric lifetime of the CO emitted (Sup-
plementary Information section 1 and Supplementary Fig. 1).
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Figure 1c shows the bottom-up and top-down CO2 + CO carbon emis-
sions from fires during May–September 2023. The bottom-up datasets 
show large differences, ranging from 234 to 735 TgC (mean of 469 TgC). 
This range is reduced by 69% in the top-down estimates (570–727 TgC), 
which also give a larger mean estimate of 647 TgC. Emissions during 
2023 far exceed typical Canadian forest fire emissions, with 2010–2022 
average emissions of 29–82 TgC for the bottom-up inventories and 
121 TgC for top-down estimates (Supplementary Fig. 2). To contextu-
alize these numbers, we compare the top-down estimates to annual 
national fossil fuel emissions for the ten largest emitters (Fig. 1d). The 
5 month 2023 emissions are more than four times larger than Canadian 
annual fossil fuel emissions (149 TgC yr−1) and comparable to India’s 
annual emissions (740 TgC yr−1).

Fire activity is affected by several complex drivers, including fuel 
traits20 and ignition probability21. However, fire weather—hot and dry 
conditions—has been shown to be extremely important in driving 
fire behaviour22. Climate data show an exceptionally hot and dry fire 
season for Canadian forests during 2023 (Fig. 2). This was the driest 
January–September period for Canadian forests since at least 1980, 
with about 86% of forested area having below-average precipitation 
and about 52% being more than 1 s.d. below the 2003–2022 average 
(Supplementary Fig. 4). May–September 2023 was the warmest since at 
least 1980, with about 100% of the forest area above average and about 
90% being more than 1 s.d. above the 2003–2022 average. Similarly, 
the vapour pressure deficit (VPD), which is closely associated with 
fire activity22–24, was the third highest since 1980, including 85% of the 
forest area being above average and about 54% being more than 1  s.d. 
above the 2003–2022 average.

Although hot–dry conditions were widespread across Canadian 
forests, there are two notable regional patterns. Western Quebec  
(49°–55° N, 72°–80° W), which is typically relatively wet (Supplementary 

Fig. 5a), had exceptionally dry conditions during 2023, with precipita-
tion through September being 23.7 cm (49%) below average. Coupled 
with extreme heat and VPD during June–July, fire emissions in this 
region contributed about 15% of the national total (Supplementary 
Fig. 6). The other notable region was northwestern Canada near the 
Great Slave Lake (57°–62° N, 110°−125° W). This region is drier than 
western Quebec on average, with about half the annual precipitation. 
However, 2023 was exceptional, with both a large precipitation deficit 
of 8.1 cm (27% of January–September total) and exceptionally warm 
conditions throughout May–September (+2.6 °C) (Supplementary 
Fig. 6). This region contributed about 61% of the total Canadian forest 
fire emissions.

Fires and climate
The relationship between climate variability and fire emissions for 
Canadian forests is examined in Fig. 3, which shows fire emissions as  
a function of temperature and precipitation Z-scores over 2003–2023 
for the 0.5° × 0.625° grid cells, in which Z-scores are the anomalies 
divided by the standard deviation. May–September emissions are low-
est for combined cool–wet conditions (5.2 gC m−2), whereas emissions 
increase when either temperature is above average (19.5 gC m−2) or 
precipitation is below average (9.2 gC m−2). However, emissions are 
largest for combined warm–dry conditions (35.7 gC m−2). In particular, 
fire emissions are much increased during exceptionally hot and dry 
conditions (99.6 gC m−2, temperature Z > 1 and precipitation Z < −1). 
These hot–dry conditions were much more prevalent in 2023 than in 
preceding years, with a mean May–September T2M Z-score of 2.3 and a 
precipitation Z-score of −1.1 across grid cells, explaining why fire emis-
sions were extreme during 2023. Notably, the number of individual fires 
during 2023 was not unusual, with 6,623 relative to a 10 yr average of 
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Fig. 1 | CO enhancements and fire emission estimates. a–c, May–September 
TROPOMI dry-air mole fractions of CO (XCO) averaged over 2019–2022 (a) and for 
2023 (b) aggregated to a 2° × 2.5° grid. c, Canadian forest fire carbon emissions 
(from CO and CO2) for the 2023 May–September fire season, compared with fire 
emissions during 2010–2022 (distribution shown by box-and-whisker plots). 

Top-down emissions over 2010–2022 are estimated from MOPITT (2010–2021) 
and TROPOMI (2019–2022) CO retrievals. d, A comparison of May–September 
Canadian fire emissions with 2022 territorial fossil carbon emissions for the ten 
largest emitting countries, obtained from Global Carbon Budget 20222.
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5,597 (ref. 25). Yet, probably primarily driven by these hot–dry condi-
tions24, many of these fires grew to enormous sizes with hundreds of 
megafires (greater than 10,000 ha) recorded.

Next, we examine future climate conditions in the region and 
how they compare to the concurrent climate conditions that led 
to the massive fires. Figure 3 shows the decadal mean temperature 
and precipitation Z-scores for the median of 27 models from the 

coupled model intercomparison project phase 6 (CMIP6)26 under the 
moderate-warming shared socioeconomic pathway (SSP) 2–4.5 (ref. 4). 
Large projected temperature increases are found to occur, with aver-
age temperatures in the 2050s similar to 2023. More modest increases 
in precipitation are projected, indicating a ‘speeding up’ of the water 
cycle, in which both evaporation and precipitation rates increase (Sup-
plementary Fig. 12 shows ensemble distribution). Studies indicate that 
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Fig. 2 | Canadian forests climate anomalies for 2023 relative to 2003–2022 
mean. a–d, Maps (left) and time series (right) of CPC global unified gauge- 
based cumulative precipitation (∑P) (a), MERRA-2 2 m temperature (with 
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spatial resolution of 0.5° × 0.625° and Z-scores are for the area-mean of 
Canadian forests. Note that GFED4.1s is shown instead of the inversion results 
because those are at a coarser spatial resolution and cover a shorter time 
period, maps of prior and posterior mean fire emissions are shown in 
Supplementary Fig. 14. Months are shown from January (J) to December (D).
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the combined effect will result in regional increases in moisture deficits 
for Canadian forests through the end of the twenty-first century6,27,28. 
Beyond the 2050s, average temperature and precipitation conditions 
are projected to exceed the historical range. These changes will impact 
the boreal carbon cycle in many ways, such as changing fuel loads and 
species composition, which complicates projections of future fire 
activity. However, increases in boreal fire emissions linked to warming 
have been reported over recent decades13,27,29,30 and several studies have 
projected further increases in Canadian fire activity with future warm-
ing5–8. Thus, we find that warming, coupled with regionally increasing 
moisture deficits, is likely to drive increased fire carbon emissions 
from Canadian forests.

Canadian carbon budget implications
As a party to the Paris Agreement, Canada is obligated to track economy- 
wide greenhouse gas (GHG) emissions and removals in a national GHG 
inventory (NGHGI). This includes tracking emissions and removals from 
‘managed’ lands, for which human interventions and practices have 
been applied to perform production, ecological or social functions31. 
However, the 2006 Intergovernmental Panel on Climate Change (IPCC) 
guidelines for national GHG inventories31 and Canadian NGHGI32 differ 
in how emissions and removals over managed lands are categorized. 
The IPCC guidelines treat all emissions and removals on managed land 
as anthropogenic, whereas the Canadian NGHGI treats ‘natural distur-
bances’ as non-anthropogenic. This difference in categorization leads 
to large differences between the Canadian NGHGI and an estimate using 
the IPCC guideline definitions.

Figure 4 shows that NGHGI removals on managed forest land are 
almost exactly compensated by emissions from harvested wood prod-
ucts, such that the total CO2 emissions for Canada are dominated by 
the energy sector (more than 90% of net emissions). However, we see 
that natural disturbances are shown to be of considerable magnitude, 
amounting to nearly 60% of total CO2 emissions in 2021. The 2023 
CO + CO2 fire emissions across managed Canadian forests (see section 

on ‘Managed land’) are estimated to be 421 (388–461) TgC, amounting 
to 2.5–3 years of economy-wide CO2 emissions.

Regardless of their characterization, fire carbon emissions will affect 
the growth rate atmospheric CO2. As such, monitoring changes in the 
carbon budget across both managed and unmanaged land is impor-
tant. Including all land in the Canadian carbon budget, top-down 
estimates find that Canadian ecosystems are a sink of CO2 when con-
strained by either in situ or space-based CO2 observations. Using both 
data types, an ensemble of atmospheric CO2 inversion systems report 
that Canadian carbon stocks increased 366 ± 88.6 TgC yr−1 over 2015–
202011, contributing about 30% of the net land carbon sink. Similarly, 
space-based biomass estimates find carbon accumulation in Canadian 
boreal forests, although smaller in magnitude13,33,34. Thus, Canadian 
forests play an important role in mitigating anthropogenic emissions, 
slowing the rise of atmospheric CO2. The large carbon release result-
ing from the 2023 Canadian fires puts into question the durability of 
this sink. Others13 showed that fires have acted to suppress the carbon 
uptake potential of Canadian forests over the past 30 years. Although 
Canadian forests have historically experienced large stand-replacing 
fires at infrequent intervals of 30 to more than 100 years35–37, increases 
in fire frequency will probably reduce biomass recovery and affect 
species composition37–40. It has also been argued that fire, insects 
and droughts may already be driving Canadian forests into a carbon 
source41,42. In the extreme case that expansive fires, such as that of 
2023, become the norm (burning 4% of Canadian forest area), all  
Canadian forests could burn every 25 years. So, although the magni-
tude is uncertain, it is likely that increasing fire activity in Canadian 
forests will reduce the capacity of these Canadian forests to continue 
to act as a carbon sink.

The role of Canada’s fire management strategy in managing fire 
carbon emissions also deserves some discussion. Fire management 
strategies require balancing several considerations, including socio-
economic costs, ecological impacts and carbon emissions. Canada’s 
present strategy adopts a risk-based approach, for which decisions on 
whether or not to suppress fires are made on a fire-by-fire basis43, with 
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differing priorities across provinces and territories. Understanding how 
fire regimes will change with climate change is thus of high importance, 
for future decision criteria and costing.

Conclusions
The 2023 fire season was the warmest and driest for Canadian forests 
since at least 1980, resulting in vast carbon emissions from forest fires. 
Using TROPOMI CO retrievals, we estimate the total May–September 
CO2 + CO emissions from these fires to be 647 TgC (range 570–727 TgC), 
comparable in magnitude to India’s annual fossil fuel CO2 emissions. 
The 2023 warmth was exceptional based on the last 44 years but CMIP6 
climate models project that the temperatures of 2023 will become 
normal by the 2050s. Such changes are likely to increase fire activity5–8, 
risking the carbon uptake potential of Canadian forests. This will impact 
allowable emissions for reaching warming targets, as reduced carbon 
sequestration by ecosystems must be compensated for by adjusting 
anthropogenic emissions reductions.
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Article
Methods

Climate data
Precipitation estimates were derived from Climate Prediction Center 
(CPC) global unified gauge-based analysis of daily precipitation data 
provided by the National Oceanic and Atmospheric Administration 
from their website at https://psl.noaa.gov (refs. 44,45). MERRA-2 2 m 
temperature (T2M) and dew point temperature at 2 m (T2MDEW) were 
obtained from the single-level diagnostics file3. VPD was calculated 
from these quantities using:

VPD = es − ea,

where es is the saturation vapour pressure and ea is the vapour pressure, 
calculated from T2MDEW and T2M, respectively, using the formulation 
of ref. 46. The Z-scores for precipitation, T2M and VPD were calculated 
relative to the 20-year baseline of 2003–2022; for example, for T2M 
this is calculated as:

Z − score =
T2M − mean(T2M )

std(T2M )
,year

year 2003−2022

2003−2022

where T2Myear is the May–September mean T2M for a given year and 
T2M2003–2022 is the 20-element ensemble of May–September mean T2Ms 
during 2003–2022.

CMIP6 data were downloaded from the Canadian Climate Data 
and Scenarios website (https://climate-scenarios.canada.ca/?page= 
cmip6-scenarios). We examine the ensemble median of 27 models  
provided on a 1° × 1° grid (technical documentation at https://
climate-scenarios.canada.ca/?page=pred-cmip6-notes). The models 
included are based on data availability and are tabulated at https://
climate-scenarios.canada.ca/?page=cmip6-model-list. T2M and  
precipitation are analysed for the historical and future scenarios.  
We combine the historical simulation with SSP 2–4.5 (ref. 4), shown in 
the main text or SSP 5–8.5 as shown in Supplementary Fig. 7.

The Z-scores are calculated from the median of the CMIP6 ensemble 
by calculating the temporal mean of the median model mean over 
2000–2019 for a given grid cell, whereas the reanalysis data are used to 
estimate internal variability. Therefore, the T2M Z-score is calculated as:

Z − score =
T2M − mean(T2M )

std(T2M )year
CMIP year CMIP2000−2019

MERRA2003−2022

Sources and sinks
Fossil CO emissions. Anthropogenic CO emissions are obtained from 
the community emissions data system (CEDS) for historical emissions47; 
specifically we use version CEDS-2021-04-21 (ref. 48).

Prior fire CO2 and CO emissions. Fire CO2 and CO emissions are  
obtained from the GFED, GFAS and QFED databases. GFED4.1s15 pro-
vides estimates of biomass burning using a biogeochemical model 
ingesting MODIS 500 m burned area49 in combination with 1 km thermal 
anomalies and 500 m surface reflectance observations to estimate 
burned area associated with small fires using a statistical model50. 
These data were downloaded from https://www.globalfiredata.org/. 
GFAS v.1.2 provides estimates of daily biomass burning emissions by  
assimilating MODIS fire radiative power observations16. These data were 
downloaded from the atmosphere data store (https://ads.atmosphere.
copernicus.eu). We use v.2.6 of the QFED gridded emission estimates18. 
These data were downloaded from https://portal.nccs.nasa.gov/ 
datashare/iesa/aerosol/emissions/QFED/v2.6r1/0.25/QFED/. For all  
biomass burning datasets, we release fire emissions at the model surface 
but incorporate a 3 hourly diurnal cycle based on ref. 51. Year-specific 
emissions are used for the prior in the atmospheric CO inversions.

Biogenic emissions, atmospheric CO production and OH data. 
Biogenic emissions, atmospheric CO production and OH data were all 
derived from the outputs of the MOMO-Chem chemical data assimila-
tion52. An updated version of the tropospheric chemistry reanalysis v.2 
(TCR-2)53 produced using MOMO-Chem is used to evaluate the atmos-
pheric production and loss of CO. The reanalysis is produced through 
the assimilation of several satellite measurements of ozone, CO, NO2, 
HNO3 and SO2. The chemical loss of CO was estimated using the reanaly-
sis OH fields. Because of the multiconstituent data assimilation, the 
reanalysis OH shows improved agreements in global distributions over 
remote oceans in comparison with the ATom aircraft measurements 
from the surface to the upper troposphere53. Constraints obtained 
for OH profiles have a large potential to influence the chemistry of the 
entire troposphere, including oxidation of non-methane hydrocarbons 
(NMHCs) to estimate the chemical production of CO. The biogenic 
emissions at the surface were obtained from the model of emissions 
of gases and aerosols from Nature v.2.1 (MEGAN2.1)54. Year-specific 
fields were only available through 2018 and estimates for that year 
are repeated for more recent years. We also perform a supplemental 
sensitivity analysis for the impact of prescribed OH abundances on 
inferred emissions using the fields of ref. 55, which are commonly used 
for GEOS-Chem methane inversions56.

CO retrievals
TROPOMI. TROPOMI is a grating spectrometer aboard the ESA 
Sentinel-5 Precursor (S5P) satellite which measures Earth-reflected 
radiances57. CO total column densities are retrieved in the shortwave 
infrared (around 2.3 μm) using the shortwave infrared CO retrieval 
algorithm58,59. TROPOMI CO retrievals60 were downloaded from the 
Copernicus data space ecosystem (https://dataspace.copernicus.eu/). 
We use S5P RPRO L2 CO (processor v.2.4.0) through 25 July 2022, then 
switch to S5P OFFL L2 CO for more recent data (processor v.2.5.0 or 
2.5.0). Retrieved CO total column densities are then converted to dry-air 
mole fractions of CO (XCO) using the dry-air surface pressure and hyp-
sometric equation. The column averaging kernel is similarly converted 
to mole-fraction space. Individual retrievals (quality flag ≥ 0.5) from 
each orbit are aggregated into super-observations using the model 
grid (2° × 2.5°).

The retrieval uncertainty on super-observations is taken to be 
the mean uncertainty on all retrievals in a given super-observation. 
This approach is used because systematic errors may exist between 
retrievals, such that assuming random errors would underestimate 
the true retrieval error. For assimilation into NASA carbon monitoring 
system-flux (CMS-Flux), we calculate observational errors that incor-
porate error in the atmospheric transport model. For this, we follow 
the approach of ref. 61. First, we perform a forward model simulation 
with the prior fluxes for 2019–2023. Then we take the observational 
uncertainty to be the standard deviation between the simulated and real 
TROPOMI super-observations over a moving window of 30° latitude, 
30° longitude and 30 days (across all years). The uncertainties esti-
mated using this approach range over 3.5–14.3 ppb (5–95 percentiles), 
whereas retrieval errors range over 1.4–4.9 ppb. Thus, the observational 
errors are dominated by representativeness errors.

MOPITT. We use the MOPITT (measurements of pollution in the tropo-
sphere) satellite thermal-infrared–near-infrared (TIR–NIR) CO retrieval. 
Version 9 (L2V19.9.3)62 is used from 2009 to 31 October 2022, whereas 
L2V19.10.3.beta is used from 1 November 2022 onwards. These data 
were downloaded from the EarthData ASDC (https://asdc.larc.nasa.
gov/data/MOPITT/). As with TROPOMI, profile retrievals were con-
verted into dry-air mole fractions of CO (XCO) for assimilation; how-
ever, unlike TROPOMI, we do not generate super-observations but 
instead assimilate individual observations. This is because the footprint 
of MOPITT retrievals (22 × 22 km2) is much coarser than TROPOMI  
retrievals (3 × 7 km2).
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TCCON. The total carbon column observing network (TCCON)  
consists of ground-based Fourier transform spectrometers which 
retrieve XCO, XCO2 and other species from observations of solar radia-
tion63. In this study, we examine GGG2020 (ref. 64) TCCON data from 
Park Falls65 and East Trout Lake66. These data were obtained from the 
TCCON Data Archive hosted by CaltechDATA at https://tccondata.org. 
Super-observations are created for each site as hourly averages; we 
only include hours with five or more observations.

Atmospheric CO inversions
We perform a series of CO inversion analyses using the CMS-Flux atmos-
pheric inversion system. This inversion model is descended from the 
GEOS-Chem adjoint model67 and has been used for CO2 (refs. 68,69) and 
CO inversion analyses70. The inversions in this study are all performed 
globally at 2° × 2.5° spatial resolution using MERRA-2 reanalysis. CEDS 
anthropogenic emissions, biogenic atmospheric CO production, direct 
biogenic CO emissions and fire emissions (from GFED4.1s, GFAS or 
QFED) and atmospheric OH fields are all prescribed in the forward 
simulations (see section on ‘Sources and sinks’). Four-dimensional 
variational data assimilation (4D-Var) is used to optimize scaling factors 
on the net surface flux for each grid cell (combined anthropogenic, fire 
and direct biogenic CO flux). The posterior CO fluxes are then decom-
posed into anthropogenic, fire and biogenic fluxes using the fractional 
contribution of the prior (an approach widely used for CO inversions).

A series of MOPITT XCO inversions are performed over 2010–2021. 
Weekly fluxes are optimized over the period 7 November of the pre-
ceding year (YYYY − 1) to 1 February of the next year (YYYY + 1), the 
optimized fluxes in the desired year are retained (YYYY) and the fluxes 
outside this period are discarded as spin-up or spin-down. These inver-
sions are performed using the GFED4.1s fire inventory. Prior uncertain-
ties on emissions are assumed to be proportional to the emissions, with 
a scale factor uncertainty of 200%.

TROPOMI XCO inversions are performed over 2019–2023. These inver-
sions are performed over a truncated period of 1 April to 30 September, 
with April then being discarded as spin-up. Several different inver-
sion configurations are used to quantify the uncertainty in posterior 
fluxes due to both Bayesian posterior uncertainties and systematic 
choices about error specification and inversion configuration, both of 
which have been shown to contribute significantly to inversion error  
estimates11.

Three ensembles of inversions are performed on the basis of the three 
different prior fire inventories: GFED4.1s, GFAS or QFED (Extended 
Data Fig. 1a). Each prior inventory was subjected to four different 
experimental configurations (Extended Data Fig. 1b). In one case, the 
XCO super-observations error is taken to be the mean retrieval uncer-
tainty across all retrievals included in a given super-observation. This 
approach typically gives an uncertainty of 1.3–4.9 ppb. The other case 
uses an observational error estimate that incorporates representative-
ness errors (see section on ‘TROPOMI’), which are typically between 3.5 
and 14.3 ppb. The experimental configurations also differ by the treat-
ment of prior uncertainties on the fluxes. These uncertainties are not 
well known a priori, thus we use two very different approaches. In the 
first approach, we assume that the errors on fluxes are equal to 200% 
of the prior flux estimate. In the second approach, we assume that flux 
uncertainties are near constant in flux units (scale factor uncertainty 
times control flux is constant, this is truncated to scale factors uncer-
tainties between 0.25 and 1,000). Finally, we also vary the temporal 
optimization to either 3 or 7 days. As with the prior flux uncertain-
ties, there are many possible choices for temporal optimization, so 
we choose two reasonable estimates to quantify the sensitivity to this 
choice. The spread in maximum a posteriori estimates across these 
different set-ups gives an indication of the uncertainty in estimated 
fluxes due to the set-up decisions.

We also estimate the Bayesian posterior uncertainty (Extended 
Data Fig. 1c), which derives from uncertainties in the prior fluxes and 

observations. This uncertainty is estimated using the Monte Carlo 
method introduced by ref. 71 and formalized by ref. 72 We perform the 
experiment during 2023 for each prior inventory and use 40 inversion 
ensemble members using the inversion configuration with TROPOMI 
XCO representativeness errors and 7 day optimization.

Finally, for each prior inventory, we calculate the posterior best 
estimates and uncertainties from the experiments described above 
(Extended Data Fig. 1d). The best estimate is taken to be the mean 
across the four different inversion configurations. The uncertainty 
on this estimate is taken as the square-root of the sum of the variances 
resulting from the different inversion configurations and Monte Carlo 
posterior covariance estimate. The overall best estimate is taken to be 
the average across the best estimates for the prior inventory ensembles 
and the overall uncertainty is taken to be the range of 1 σ uncertainties 
across the three prior inventory ensembles.

We estimate posterior CO2 fluxes from the posterior CO emissions 
using the CO2/CO emission ratios provided by the prior GFED4.1s, GFAS 
and QFED inventories. Each inventory has different CO2/CO emission; 
thus, we use the emission ratio to estimate the posterior CO2 from the 
same inventory that was used as the prior inventory. This incorpo-
rates some uncertainty CO2/CO emission ratio into the CO2 emission 
estimates.

Regional masks
Forest area. Forest area is defined using v.6.1 of the MODIS MCD12C1 
product73. On the basis of the type 1 majority land cover, we define for-
ests to include the categories evergreen needleleaf forests, evergreen 
broadleaf forests, deciduous needleleaf forests, deciduous broadleaf 
forests, mixed forests, woody savannas and savannas.

Managed land. The map of managed lands74 was accessed through 
personal communication with M. Hafer and A. Dyk (the map was only 
created for cartographic communication purposes). The extent of land 
considered managed forest in Canada for the purposes of GHG report-
ing to the United Nations Framework Convention on Climate Change 
cannot be mapped in detail. That information comes from provincial/
territorial forest inventories that are not spatially explicit and cannot 
be mapped. Supplementary Fig. 13 shows the managed land map and 
the fractional managed/unmanaged for 2° × 2.5° grid cells.

Data availability
The dataset produced for this study can be accessed at JPL Open Reposi-
tory, https://doi.org/10.48577/jpl.V5GR9F.

Code availability
The Python and Bash codes used in this study are available at Zenodo 
(https://doi.org/10.5281/zenodo.12709398)75.
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Extended Data Fig. 1 | Schematic diagram of the TROPOMI XCO inversion 
procedure. (a) Ensembles of inversions are performed based on three different 
flux inventories. (b) To quantify the sensitivity to systematic error sources, 
four inversions are performed that differ in observational error constraints, 
prior error constraints, and temporal optimization frequency. (c) Bayesian 

posterior error estimates are estimate for 2023 by following the Monte Carlo 
approach for 4D-Var of Chevalier et al.71. (d) The posterior best estimates are 
taken as the average maximum a posteriori estimate across inversion 
configurations while the uncertainty is taken to be the sum-of-squares of the 
error components estimated in (b) and (c).


	Carbon emissions from the 2023 Canadian wildfires

	Fire emissions

	Fires and climate

	Canadian carbon budget implications

	Conclusions

	Online content

	Fig. 1 CO enhancements and fire emission estimates.
	Fig. 2 Canadian forests climate anomalies for 2023 relative to 2003–2022 mean.
	Fig. 3 Relationship between fire emissions and climate anomalies.
	Fig. 4 Canada’s NGHGI CO2 emissions and removals compared with the 2023 Canadian fires.
	Extended Data Fig. 1 Schematic diagram of the TROPOMI XCO inversion procedure.




