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Unpriced climate risk and the potential 
consequences of overvaluation in US  
housing markets

Jesse D. Gourevitch    1 , Carolyn Kousky1, Yanjun (Penny) Liao2, 
Christoph Nolte    3, Adam B. Pollack    3,4, Jeremy R. Porter5,6 & Joakim A. Weill7

Climate change impacts threaten the stability of the US housing market. 
In response to growing concerns that increasing costs of flooding are 
not fully captured in property values, we quantify the magnitude of 
unpriced flood risk in the housing market by comparing the empirical and 
economically efficient prices for properties at risk. We find that residential 
properties exposed to flood risk are overvalued by US$121–US$237 billion, 
depending on the discount rate. In general, highly overvalued properties 
are concentrated in counties along the coast with no flood risk disclosure 
laws and where there is less concern about climate change. Low-income 
households are at greater risk of losing home equity from price deflation, 
and municipalities that are heavily reliant on property taxes for revenue 
are vulnerable to budgetary shortfalls. The consequences of these financial 
risks will depend on policy choices that influence who bears the costs of 
climate change.

Climate change poses a range of financial and economic risks to house-
holds, communities and market sectors across the United States1,2. 
These risks stem not only from the physical impacts of climate change, 
but also from how property owners, private companies and public 
institutions respond to growing climate hazards. Adaptation responses 
will not only determine the magnitude of total costs, but alsowhether 
these costs become increasingly borne by American taxpayers, or 
alternatively become internalized by those who are directly exposed 
to physical climate impacts3.

Among the natural hazards exacerbated by climate change, flood-
ing is the deadliest, costliest and most widely experienced in the United 
States4. Currently, more than 14.6 million properties in the United 
States face at least a 1% annual probability of flooding5, with expected 
annual damages to residential properties exceeding US$32 billion6. 
Increasing frequency and severity of flooding under climate change 
is predicted to increase the number of properties exposed to flooding 

by 11% (ref. 5) and average annual losses (AALs) by at least 26% by 2050 
under Representative Concentration Pathway (RCP) 4.56, presenting 
substantial costs to property owners, insurers, mortgage lenders and 
the federal government.

The increasing burden of flooding under climate change has led 
to growing concerns that housing markets are mispricing these risks, 
thus causing a real estate bubble to develop7–9. While empirical studies 
have observed an average discount of 4.6% for properties located in the 
100 yr flood zone10, recent evidence suggests that this price discount 
does not fully capture the expected costs of flooding7,11. One study esti-
mated that properties in the 100 yr flood zone could be overvalued by 
an average of 8.5% of their current value9, not accounting for increasing 
damages from climate change. This unpriced flood risk could perpetu-
ate perverse incentives for continued development in floodplains and 
underinvestment in hazard mitigation, further inflating the hous-
ing bubble. Despite these concerns, the magnitude, distribution and 
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of the housing market will largely depend on how policymakers and 
the multiple players in the housing and mortgage markets respond to 
increasing flood hazards under climate change.

To better understand the scope and severity of these adaptation 
risks, we quantify the magnitude and distribution of unpriced flood 
risk and overvaluation in US housing markets. We further evaluate the 
potential loss of home equity among demographic groups in the United 
States and identify municipalities vulnerable to budgetary losses result-
ing from devaluation of flood zone properties. Finally, we consider 
possible changes in state and federal policy, as well as mortgage lending 
practices, that could internalize the costs of flooding among flood zone 
property owners and lead to widespread price deflation.

Results
We calculate overvaluation of properties exposed to flood risk based 
on the difference between our estimates of their empirical and eco-
nomically efficient price discounts. In our efficient price estimates, we 
account for future damage costs to properties located both inside and 
outside of the Special Flood Hazard Area (SFHA; that is, the 100 yr flood 
zone as mapped by FEMA). Based on previous studies9,10,24, we assume 
that only properties located within the SFHA currently capitalize expo-
sure to flood risk, whereas properties outside of the SFHA do not. We 
describe two alternative analyses that test the sensitivity of this assump-
tion in the Methods section ‘Sensitivity and uncertainty analyses’.

Following best practices25, we estimate the empirical flood zone 
price discount using a repeat sales panel model, which controls for 
time-invariant characteristics of individual properties. Similar to ref. 9, 
our approach identifies the effect of rezoning properties into the SFHA 
as the result of FIRM updates over time. To build the panel model, we 
employ an extensively processed version of the Zillow ZTRAX data-
base26, a comprehensive dataset of property transactions in the United 

potential social and economic consequences of overvaluation in US 
housing markets remain uncertain.

Incomplete pricing of flood risk may be driven by lack of infor-
mation about potential flood losses, cognitive biases in risk percep-
tions and/or socialization of flood-related costs (that is, transferred 
to taxpayers). In many cases, potential buyers may be unaware of a 
property’s risk because of deficiencies in the Federal Emergency Man-
agement Agency (FEMA)’s flood insurance rate maps (FIRMs)12, as well 
as inconsistent state-level flood risk disclosure laws13. Misperceptions 
of natural hazards and climate change further limit homebuyers’ ability 
to rationally price flood risk, as a range of systemic biases may lead to 
underestimation of the probability and severity of being affected by 
flooding14. Additionally, subsidization of National Flood Insurance Pro-
gram (NFIP) premiums and climate-agnostic mortgage lending prac-
tices have created distorted price signals by transferring flood-related 
costs away from property owners15. Only recently are these price signals 
starting to shift under the NFIP’s new pricing methodology, Risk Rating 
2.0, which determines premiums based on individual assessments of 
flood risk and rebuilding costs for each property16, and as mortgage 
lenders begin to insulate themselves from credit risk associated with 
exposure to flood risk17–20.

While efficient capitalization of flood risk in property prices may 
reduce the incentive to develop in floodplains, thus decreasing the 
total costs of flooding, it may also yield negative consequences for 
flood zone property owners and local governments. In the event of 
price deflation, many homeowners would be at risk of losing value in 
their largest asset—their home21. In turn, municipalities that are heavily 
reliant on property taxes for revenue would be vulnerable to budgetary 
shortfalls if the assessed values of flood zone properties decline22,23. 
These potential consequences of the flood risk housing bubble, the 
time horizon over which they occur, and their effect on the stability 
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Fig. 1 | Flood risk capitalization and property overvaluation by county. 
a, Estimated flood zone property price discount, differentiated by flood risk 
disclosure laws and attitudes towards climate change. b, Median property-
level overvaluation, as a proportion of properties’ current fair market value. 

c, Property overvaluation as a proportion of the total fair market value of 
all properties. d, Total overvaluation in dollars. The counties shapefile was 
downloaded from the US Census Bureau45.
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States over the last 30 yrs, joined with newly consolidated historical 
FIRM layers27 (see Methods). We evaluate variation in the discount of 
flood zone property prices by accounting for state- and county-level dif-
ferences in access to flood risk information and perceptions of climate 
risks. While there are many other factors that may drive heterogeneity 
in flood risk capitalization, we focused on these two because previous 
work has shown them to be particularly salient7,9,13,28.

We define the efficient price of properties exposed to flooding 
as the difference between property values in the absence of flood risk 
and the net present value (NPV) of AALs from pluvial, fluvial and coastal 
flooding between 2020 and 2050, accounting for future impacts of 
climate change under RCP 4.56. This approach leverages newly available 
national-scale flood inundation maps from the First Street Foundation 
under a range of recurrence intervals29. To estimate property-specific 
flood losses, we overlay these maps with the locations of property 
structures and apply depth-damage functions specified by the FEMA 
HAZUS model to calculate damage as a proportion of property value30. 
Unless stated otherwise, all overvaluation estimates are based on the 
NPV of AALs calculated using a 3% discount rate. Results based on other 
discount rates are shown in Supplementary Fig. 16.

Empirical flood zone discounts
Across all counties in the conterminous United States, we estimate that 
properties currently located in the SFHA are discounted by an average 
of −2.8%. However, flood risk capitalization varies according to differ-
ences in state-level flood risk disclosure laws and county-level percep-
tions of climate risk (Fig. 1a and Supplementary Fig. 7). In counties with 
no disclosure requirements (Groups A and C in Fig. 1a), we estimate a 
flood zone discount of −2.4 to −2.5%. In counties with at least one form 
of disclosure requirement, we estimate flood zone discounts of −9.7% 
(Group D) and −4.5% (Group B), depending on whether concerns about 
climate risk in a county are above or below the national median.

Magnitude and distribution of overvaluation
Our comparison of the empirical and efficient price discounts for all 
properties exposed to flood risk (that is, properties where the NPV of 
AALs is greater than zero) reveals that properties exposed to flood 
risk are overvalued by a total of US$121–US$237 billion, depending on 
the discount rate (Supplementary Fig. 16). Using a 3% discount rate, 
our preferred value31, total overvaluation is US$187 billion. These esti-
mates assume that properties outside the SFHA do not have a flood risk 
discount. Under alternative assumptions that properties outside the 
SFHA do capitalize some amount of their flood risk (see ‘Sensitivity and 
uncertainty analyses’ in Methods), total overvaluation decreases by 
2–22% (Supplementary Figs. 11 and 12). We also show the sensitivity of 
these results to alternative discount rates and flood hazard scenarios 
in Supplementary Figs. 9 and 10.

We use several metrics to identify the regions of the United States 
where the financial and economic risks posed by overvaluation are 
greatest. Based on the median of property-level overvaluation, in terms 
of a proportion of properties’ current fair market value, Appalachia 
and northern New England emerge as overvaluation hotspots (Fig. 1b). 
These regional trends reflect poor flood risk capitalization and relatively 
high AALs per property, but do not account for the number or value 
of properties at risk. When evaluated as a proportion of the total fair 
market value of all properties in a county, overvaluation remains high 
in Appalachia, yet is also high along the Gulf and Atlantic coasts (Fig. 1c). 
In some of these counties, overvaluation as a proportion of the total fair 
market value of all properties exceeds 10%. However, when evaluated in 
absolute dollar terms, overvaluation is greatest along the Gulf, Atlantic 
and Pacific coasts (Fig. 1d), which reflects regional differences in prop-
erty prices (Supplementary Fig. 2). In particular, properties in Florida 
are overvalued by more than US$50 billion (Supplementary Fig. 17).

The distribution of overvaluation among properties exposed 
to flood risk is highly right skewed whereby relatively few properties 
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Fig. 2 | Distributions of overvaluation by property location. a, Histogram 
of overvaluation as a percentage of properties’ values. b, Histogram of 
overvaluation in US$. c, Proportion of SFHA and non-SFHA properties for 
incremental levels of overvaluation. d, Cumulative overvaluation in US$, with 

properties sorted in descending order of overvaluation. In a and b, the y axis is on 
a log scale and the histogram for SFHA properties is stacked on the histogram for 
non-SFHA properties.
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drive a large proportion of total overvaluation. In dollar terms, 11% of 
properties contribute 80% of total overvaluation and 19% contribute 
90% of overvaluation (Fig. 2d). These acutely overvalued properties 
have higher average sales prices and are exposed to severe flood dam-
ages. In contrast, 55% of flood-exposed properties are overvalued 
by less than 1% of their value and 76% are overvalued by less than 5% 
(Fig. 2a). In dollar terms, 90% of flood-exposed properties are over-
valued by less than US$50,000 and 94% are overvalued by less than 
US$100,000 (Fig. 2b).

A large portion of overvaluation is driven by properties located 
outside of the SFHA. These properties comprise 83% of all proper-
ties at risk of flooding and contribute 69% of total overvaluation 
in dollar terms (Fig. 2). Among properties in the highest decile of 
overvaluation in dollar terms, 69% are located outside of the SFHA; 
among properties in the second highest decile of overvaluation, 82% 
are located outside of the SFHA. While these properties are on aver-
age less overvalued (as a proportion of their value) than properties 
located in the SFHA (Fig. 2c), they still constitute a major source of 
the total unpriced flood risk in the United States due to their sheer 
number and less efficient capitalization of exposure to flooding. 
Under alternative assumptions that properties outside the SFHA 
do capitalize some amount of their flood risk (see ‘Sensitivity and 
uncertainty analyses’ in Methods), the portion of total overvaluation 
from non-SFHA properties decreases to 60–64% (Supplementary 
Figs. 11 and 12).

Potential impacts of overvaluation among demographic groups
Low-income property owners are at greater risk of losing home equity 
from property price deflation (Fig. 3a and Supplementary Fig. 13). These 
findings were derived by aggregating properties by census tract and 
grouping census tracts by household median income quintiles. Among 
census tracts in the lowest quintile of household median income, 9.0% 
of properties are overvalued by >0 to 5%. By contrast, 7.5% of properties 
in the highest quintile of household median income are overvalued by 
up to 5%. This trend holds for higher levels of overvaluation as well. For 
example, 0.8% of properties are overvalued by 50–100% in the lowest 
income quintile tracts, whereas 0.3% of properties are overvalued by 
50–100% in the highest income tracts.

Modest overvaluation (that is, >0–5% of property value) is more 
widespread in census tracts with a higher percentage non-white popu-
lation, but whiter tracts have a larger share of highly overvalued prop-
erties (that is, 5–100% of property value) (Fig. 3b and Supplementary 
Fig. 13). In census tracts with the lowest percent population white (not 
Hispanic or Latino), 11.0% of properties are overvalued by >0 to 5%. By 
contrast, in census tracts with the highest percentage of white popula-
tion, 6.7% of properties are overvalued by >0 to 5%. This trend reverses 
at levels of overvaluation greater than 5%. In tracts in the lowest percent 
white quintile, 0.3% of properties are overvalued by 50–100%, whereas 
1.1% of properties are overvalued by 50–100% in the highest percent 
white tracts. These demographic trends are less pronounced under the 
alternative assumptions regarding capitalization of exposure to flood 
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risk among properties located outside of the SFHA (see ‘Sensitivity and 
uncertainty analyses’ in Methods, and Supplementary Figs. 14 and 15).

Potential fiscal impacts of overvaluation
If housing markets were to fully capitalize exposure to flood risk, the 
corresponding price deflation could negatively impact the revenues of 
local governments that depend on property taxes. Across the United 
States, many municipalities are heavily reliant on property taxes for 
revenue, with some locales receiving over 50% of total revenue from 
property taxes32. We identify counties with relatively high property over-
valuation and where local governments are heavily reliant on property 
taxes for revenue (Fig. 4 and Supplementary Table 1). The intersection 
of these two variables indicates municipalities that are most vulner-
able to budgetary shortfalls if property price deflation were to occur. 
These municipalities are concentrated in coastal counties, as well as 
inland areas in northern New England, eastern Tennessee, central Texas, 
Wisconsin, Idaho and Montana. On average, the counties where these 
municipalities are located have larger populations, higher household 
incomes and are whiter compared with all other US counties (Fig. 4). 
Despite relatively high overvaluation, local governments in states such 
as Alabama, Louisiana and West Virginia are insulated from property 
devaluation because they are less reliant on property taxes for revenue.

Discussion
In this analysis, we quantify the magnitude of the housing bub-
ble created by unpriced flood risk and evaluate the distribution of 

overvaluation among property owners across the United States. Our 
results underscore the severity of the financial risks to current home-
owners and municipalities posed by potentially widespread property 
price deflation. In general, highly overvalued properties are concen-
trated in counties along the coast, with no flood risk disclosure laws, and 
where there is less concern about climate change (Fig. 1). Within these 
counties, a large portion of total overvaluation is driven by properties 
located outside of the SFHA (Fig. 2), highlighting the deficiencies in 
communicating flood risk to residents in these areas.

Our results suggest that the housing market is more overvalued 
than previously established. We build on previous studies that alluded 
to the existence of climate housing bubbles, but which focused on local-
ized markets and overlooked potential distributional consequences 
(see refs. 7,11). Compared with the one other study that estimated over-
valuation nationally9, our central estimate of total overvaluation—
US$187 billion, under a 3% discount rate—is more than double. The 
primary factor driving this difference is the benchmark for determining 
efficient property prices. We use the NPV of AALs between 2020 and 
2050, accounting for climate change, whereas ref. 9 uses the NPV of 
NFIP premiums prior to Risk Rating 2.0. Our estimate more accurately 
captures future flood damages since historic NFIP premiums were not 
accurate measures of flood risk and were heavily subsidized. NFIP pre-
miums also do not reflect future flood damages from climate change.

We also find that overvaluation is widespread among low-income 
households, putting them at risk of future price reductions and loss of 
home equity (Fig. 3). In the event of price deflation, these inequities 
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Box 1

Future scenarios for adaptation responses mediating the 
magnitude and distribution of flood-related costs
These four scenarios illustrate how public and private actors  
could respond to increasing flood risk under climate change  
and the possible consequences of these adaptation strategies.  
The vertical axis of the figure indicates the magnitude of the 
long-term total costs of flood damages. The horizontal axis indicates 
the extent to which costs are socialized among the public versus 
internalized by flood zone property owners. Possible drivers and 
consequences for each scenario are illustrative, not comprehensive, 
and are not mutually exclusive.

Under the ‘Business-as-usual’ scenario, increased socialization of 
flood losses will likely stabilize housing markets, at least in the near 
term, because homeowners are insulated from increasing costs, thus 
perpetuating overvaluation (Scenario A). This scenario also creates 
perverse incentives for development in flood-prone areas and local 
underinvestment in risk reduction activities, further increasing total 
costs from future floods.

Under the ‘Damage reduction’ scenario (Scenario C), flood costs 
are reduced through state and federal investment in an array of 
risk reduction interventions. These interventions may occur at the 
property level via buyouts or structure elevations, as well as the 
community level through seawalls, levees and various forms of green 
infrastructure. Such investments have the potential to decrease 

overvaluation as efficient prices increase, providing financial 
protection to both homeowners and municipalities. However,  
under this scenario, perverse incentives for floodplain development 
remain, i.e. ‘the levee effect’46.

Alternatively, internalizing the costs of flooding among at-risk 
property owners will likely result in more efficient capitalization of 
flood risk9,13, as shown in Scenarios B and D. Accurate capitalization of 
flood risk in property values has the potential to decrease total costs 
and improve social welfare by limiting development in flood-prone 
areas and possibly incentivizing local investments in risk reduction47. 
However, these shifts would also negatively impact current property 
owners and municipalities most directly exposed to flood hazards as 
flood zone properties decline in value.

Housing market responses to changes in policy and lending 
practices that internalize costs of flooding among property owners 
will likely depend on the time period over which these changes occur. 
Incremental shifts in these policies and practices over a longer period 
may allow for gradual adjustments in property prices (Scenario D 
‘Soft landing’). By contrast, abrupt changes over a shorter period 
of time may result in a ‘Minsky moment’—a rapid decrease in asset 
prices leading to a market crash, followed by prolonged instability48 
(Scenario B ‘Market crash’).

Scenario D - Soft landing
Possible drivers

Incremental increases in NFIP premiums
Government and mortgage lenders incentivize
property-owners to invest in risk reduction
(structural elevation, flood skirts and so on)
Mortgage lenders gradually increase interest 
rates on flood zone loans
Flood risk disclosure laws are broadened

Potential consequences
Decrease in AALs and NFIP claims
Gradual increase in flood risk capitalization
Slow decline in flood zone property prices
Credit risks to mortgage lenders and GSEs 
decrease
Incremental retreat away from flood zones

Scenario C - Damage reduction

Possible drivers
Large-scale property buyouts
Government-sponsored community relocation
Expanded state and federal investment in flood 
protection measures (seawalls, levees, 
green infrastructure and so on)

Potential consequences
Decrease in AALs and NFIP claims
Flood risk remains poorly capitalized, but 
overvaluation decreases
Credit risks to mortgage lenders and GSEs 
decrease
Flood zone housing prices remain stable
Continued (re)building in flood prone areas

Scenario B - Market crash
Possible drivers

Large immediate increase in NFIP premiums
Broadening of NFIP coverage mandate
Large-scale flood events rapidly shift individual 
and institutional perceptions of climate risk
Reduction in post-disaster recovery funding
Lenders rapidly increase interest rates and GSEs
stop securitizing mortgages in flood zones
Flood risk disclosure laws are broadened

Potential consequences
Rapid increase in flood risk capitalization
Sudden decrease in flood zone property prices
NFIP premiums cover damage claims
Uncoordinated migration away from floodplains
Spike in flood zone property mortgage defaults

Scenario A - Business-as-usual
Possible drivers

Continued subsidization of NFIP premiums
Patchwork of state disclosure laws
No insurance mandate outside of SFHA
Increase in post-disaster recovery funding
Mortgage lending and securitization practices 
ignore credit risks associated with flooding
Minimal public investment in flood risk reduction

Potential consequences
Flood risk remains poorly capitalized, 
overvaluation persists and housing prices 
relatively remain stable
Continued (re)building in flood prone areas
NFIP becomes increasingly insolvent
Mortgage lenders and GSEs continue to absorb 
credit risk associated with flood hazards

Lesser flood risk capitalization and
greater socialization of costs

Greater flood risk capitalization and
greater internalization of costs

Lesser risk reduction and
higher total costs

Greater risk reduction and
lower total costs
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have the potential to exacerbate wealth gaps in the United States, as 
many households’ most valuable asset is their home21. One explana-
tion for such disparities is that low-income households tend to live  
in hazardous areas because of the lower property values in these 
places33. Another explanation is that lack of government invest-
ment in flood protection infrastructure in poorer neighbourhoods 
has increased flood losses compared with equally hazardous, yet 
better-protected wealthier neighbourhoods34,35. Parsing these underly-
ing drivers is beyond the scope of this analysis but is an important area 
of future research.

If property price deflation occurs, municipalities with a large 
share of properties at risk of flooding and that are also heavily reliant 
on property taxes for revenue are vulnerable to fiscal losses. While the 
collapse of housing prices during the Great Recession had negligible 
impacts on local government property tax revenues36,37, this non-effect 
has been attributed to time lags between market values and assessed 
values, coupled with the relatively rapid rebound in housing prices 
following the crash38. In contrast, declines in property values due to 
climate risk are unlikely to be temporary39, particularly for properties 
affected by sea-level rise40. This implies that the insulating effect of 
lags in property assessment may be less relevant in this context. In the 
event that price deflation and declines in property tax revenues do 
occur, local governments may need to adapt their fiscal structure to 
continue to provide essential public goods and services, such as educa-
tion, policing, parks and recreation, and public transit22,23.

While the future dynamics of how unpriced flood risk is capitalized 
by the housing market are critical to homeowners, mortgage lenders 
and real estate investors, it remains uncertain if and when overvaluation 
will become realized and price deflation will occur. Among properties 
exposed to sea-level rise, ref. 11 identifies market trends consistent 
with dynamics at the peak of previous real estate bubbles, finding 
that the prices and sales volume of these properties are gradually 
declining. Despite these early warning signs, it is difficult to make 
predictions about the future of the flood zone housing market because 
these dynamics will depend on complex interactions between property 
owners, mortgage lenders and public institutions. In Box 1, we explore 
four future scenarios for how alternative climate adaptation responses 
by public and private actors could mediate the total economic costs of 
flooding, as well as the extent to which these costs are socialized by the 
public (that is, transferred to American taxpayers) versus internalized 
by flood zone property owners.

The pricing of NFIP premiums is a critical factor mediating the 
balance between flood risk capitalization and socialization. Histori-
cally, NFIP claims payments have far exceeded premiums, indebting 
the program to the US Treasury and effectively transferring costs of 
flooding to American taxpayers15. By increasing premium costs to 
reflect current risk, Congress could shift these costs away from the 
public and towards NFIP policyholders (Box 1,, Scenarios B and D). In 
the spring of 2022, the NFIP began this process through a new pricing 
methodology called Risk Rating 2.0, which has modernized rate set-
ting with premiums that more accurately reflect property-specific 
flood risk16. While it is too soon to evaluate the effect of Risk Rating 2.0 
on property prices, in part because of an 18% annual cap on premium 
increases for existing policies, these adjustments have the potential to 
internalize flood costs and increase capitalization of risk41.

Mortgage lenders could also play an important role in determin-
ing future capitalization of flood risk. Although borrowers are more 
likely to become delinquent or default on mortgage loans in the wake 
of disaster42,43, lenders have several tools to protect against credit risk 
arising from flood events. Recent evidence suggests that lenders are 
increasingly transferring the credit risk associated with flooding to 
‘government-sponsored enterprises’ (that is, Fannie Mae and Freddie 
Mac), whose debts are backed by taxpayers, and to capital markets 
through increased securitization of mortgages in flood-prone areas18,19 
(Box 1, Scenario A). Lenders could also mitigate this risk through tools 

aimed at flood zone borrowers, which could include credit rationing 
through lower loan-to-value ratios, broadening and enforcing man-
dates to carry flood insurance, increasing interest rates and/or denying 
loans17,20 (Box 1, Scenarios B and D). Together, these practices have the 
potential to send price signals to flood zone homeowners, potentially 
leading to greater capitalization of flood risk.

More accurate and accessible information on properties’ flood risk 
would likely increase capitalization of flood risk in housing markets. 
To this end, the Infrastructure Investment and Jobs Act, passed by 
Congress in 2021, allocated an additional US$600 million to FEMA for 
improving its outdated flood maps. Non-governmental information on 
flood risk is also becoming more widely available to households. For 
example, the First Street Foundation has made its property-level flood 
risk estimates widely available on real estate websites, such as Redfin 
and Realtor.com. It is currently too soon to detect the effects of this 
new information on flood risk capitalization, although recent evidence 
suggests that access to these data has led homebuyers to bid on less 
risky properties44. Moreover, making disclosure of past flood damage 
and flood risk mandatory across all states would enable homebuyers 
to make more informed decisions and price flood risk more efficiently 
(Box 1, Scenarios B and D).

Together, our results illuminate the array of financial and eco-
nomic risks associated with unpriced flood risk and overvaluation in 
the US housing market. As demonstrated through alternative future 
scenarios (Box 1), the realization of these risks depends on institutional, 
policy, and regulatory adaptation responses to increasing flood haz-
ards, all of which must grapple with moral questions about who should 
bear the costs of climate-related disasters.
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Methods
Property transaction data
We combine the Zillow ZTRAX database49 and the PLACES database50 
to access property transactions, locations, and assessments for all 
states in the conterminous United States between 1996 and 2021. The 
ZTRAX database, provided to us by Zillow, contains property transac-
tion and tax assessment data for approximately 150 million parcels 
in over 3,100 counties nationwide (Supplementary Fig. 1). To ensure 
consistency and accuracy of the data across the United States, we 
extensively processed the ZTRAX database based on the recommenda-
tions in ref. 26. These data cleaning measures included identification 
of arms-length sales, geolocation of parcels and buildings, tempo-
ral linkages between transaction, assessor and parcel data, and the 
identification of property-types, such as single-family homes. More 
information on accessing the Zillow ZTRAX database can be found at 
www.zillow.com/ztrax.

The PLACES database uses assessor parcel numbers to link ZTRAX 
data to parcel boundaries using county- and town-specific string pat-
tern matching and geographic quality controls. For approximately one 
third of United States counties, parcel polygon data in PLACES comes 
from open-access sources; for the remainder, parcel polygon data 
comes from Regrid through their ‘Data with Purpose’ program (https://
regrid.com/purpose). The matching algorithm identifies over 1,000 
unique combinations of syntaxes and links digital parcel boundaries 
from 2,951 counties to ZTRAX data with a median county-level suc-
cess rate of 98.2% and a mean of 95.5% (measured as the percentage of 
the number of parcel boundaries matched to a tax assessor record). 
These linkages were used to identify the parcels and transactions in 
our statistical models.

Flood hazard data
We evaluated properties’ exposure to fluvial, pluvial and coastal flood 
hazards in the years 2020 and 2050 using previously developed inun-
dation maps29. These maps provide estimates of inundation depths 
at a 30 m spatial resolution under 5, 20, 100, 250 and 500 yr flood 
recurrence intervals in both years. The 2020 model outputs were vali-
dated by simulating historical flood events and comparing them to 
observed flood extents and depths, finding 87% similarity between 
the two51. Further validation of model outputs is described in the First 
Street Foundation technical documentation52. The 2050 estimates are 
based on downscaled Coupled Model Intercomparison Project 5 data 
under RCP 4.5. These data have been made available by the First Street 
Foundation and can be found on their website (www.floodfactor.com).

While uncertainty and disagreement remain across 
continental-scale flood models in terms of which areas are most 
exposed and the extent of future flooding53, the outputs from ref. 29 
provide the only peer-reviewed, publicly available, climate-adjusted, 
and historically validated US-scale flood model that has a high enough 
resolution to be property specific. Other high-resolution models do 
exist in the private sector, but are generally not made available for 
research purposes or are made available without transparent methods.

Calculating flood losses
We calculated expected annual flood losses to single-family homes 
in the United States using the methods described in ref. 54. In brief, we 
overlaid the locations of residential structures derived from the ZTRAX 
and PLACES databases with the flood inundation maps and applied 
depth-damage functions recommended by FEMA55. These functions 
were developed through expert elicitation and are used to estimate the 
damage to inundated properties as a proportion of their value based 
on flood depth relative to first-floor elevation.

While depth-damage functions are widely used in flood risk 
assessments nationally, including FEMA’s HAZUS-MH software, 
these functional relationships are highly uncertain and depend on 
numerous property-specific characteristics56. Unfortunately, many 

of these characteristics are not included in the ZTRAX data, such as 
first-floor elevations and structure types. To address the issue of miss-
ing first-floor elevations, which are crucial for translating inundation 
depths to depths relative to the first floor, we applied adjustments to 
inundation depths based on the recommendations in Sections 5.6.1–
5.6.3 of the HAZUS Technical Methodology manual57. To overcome the 
limitation of incomplete structure records, we used the proportions of 
structure types found in the NFIP policies data, as described in ref. 54.

To calculate AALs for each property in 2020 and 2050, we inte-
grated the estimated damages over the range of recurrence interval 
probabilities modelled in ref. 29 using trapezoidal Riemann sums58. In 
a given year, the probability p of one of these events occurring is 1/T, 
where T equals the expected recurrence interval (for example, p = 0.05 
for a 20 yr flood event). These probabilities are independent of each 
other, such that multiple flood events can occur in a single year. To 
estimate AALs for property i in year t between 2020 and 2050, we used 
a simple linear interpolation, where t = 0 is the year 2020 (equation 1).

AALit = AALi2020 + t × (AALi2050 − AALi2020)
30 (1)

We calculated the NPV of AALs for property i over a 30 yr time 
horizon (that is, the duration of a typical fixed-rate mortgage), where 
ρ is the discount rate (equation 2). All results are reported using a 3% 
discount rate, unless stated otherwise. The NPVs of AALs by county are 
shown in Supplementary Fig. 3.

NPVi =
30
∑
t=0

AALit(1 + ρ)−t (2)

Historical flood insurance rate maps
We employed data from all FIRMs released across the United States 
between 2005 and 2019 to determine each property’s FEMA-designated 
flood zone at the time of sale. We obtained these data through Freedom 
of Information Act requests and one-on-one meetings with former GIS 
analysts who performed contractual work for FEMA. Specifically, we 
used a digital version of the paper-based flood maps that were effec-
tive before 2005 (called the Q3 data product), combined with yearly 
snapshots of the National Flood Hazard Layer between 2012 and 2020. 
For each FIRM, we observed the date when the map became active 
(Supplementary Fig. 4), as well as the spatial extent of the 100 yr and 
500 yr floodplains. Comparing the evolution of the spatial polygons 
through time allowed us to identify changes in floodplain boundaries 
at the property level. Currently, more than 115 million or 90% of resi-
dential properties are covered by the digital FIRMs. Details on the data 
collection and cleaning steps are provided in ref. 27.

Estimating flood risk capitalization
The extent to which exposure to flood risk is capitalized in property 
values is driven by many dynamic factors, including recent local experi-
ence with flooding, insurance mandates, the cost of insurance (not just 
in the NFIP, but also private sector options), awareness of non-insurable 
costs, perceptions of risk and available information, not just from 
mandated disclosures, but also from others involved in the market, 
such as realtors or neighbours. In this analysis, we necessarily averaged 
away some of this heterogeneity and examined capitalization of flood 
risk among properties located within the SFHA. Specifically, we used 
capitalization of updated information about flood risk as an imperfect 
proxy for capitalization of exposure to flood risk (relative to not being 
exposed to any risk).

We estimated the empirical flood zone discount (that is, observed 
capitalization) using a panel model for repeat property sales. This 
method has been applied by several other recent studies to estimate 
the effects of flood events and flood zone remapping on property 

http://www.nature.com/natureclimatechange
http://www.zillow.com/ztrax
https://regrid.com/purpose
https://regrid.com/purpose
http://www.floodfactor.com


Nature Climate Change

Article https://doi.org/10.1038/s41558-023-01594-8

prices59–63, and is considered best practice in this context25. Similar to 
the approach used in ref. 9, we identified the effect of flood zone status 
on property prices by comparing single properties to themselves over 
time, as they are rezoned from outside to within the SFHA due to FIRM 
updates. A key advantage of this identification approach, particularly 
compared with cross-sectional models, is that it is less vulnerable to 
the confounding effects of time-invariant property-specific attributes, 
such as waterfront amenities, which are often spatially correlated with 
flood risk9,10.

As shown in equation (3), we estimated the effect of location within 
the SFHA (δ) on the sale price (p), where SFHAit is a binary variable equal 
to 1 if property i is located in the SFHA at time t. Property-level fixed 
effects, γi, control for all time-invariant characteristics of a property. 
We also included county-by-year fixed effects, ηct, to control for local 
market dynamics over time. These fixed effects absorb shocks to the 
housing market caused by natural hazards, including past flood events. 
α is a constant and εit is an error term. For a property to be included in 
the estimation sample, it must: (1) be outside of the SFHA in the old 
FIRM, (2) have a known floodplain status in the new FIRM and (3) be 
sold more than once while its flood zone status is known. Sales that 
occurred while the flood zone status was unknown were omitted from 
the dataset.

log (pit) = α + δgSFHAit + γi + ηct + εit (3)

We accounted for variation in the empirical flood zone discount, 
indicated by the subscript g, driven by differences among state-level 
flood risk disclosure laws and individual perceptions of climate risk by 
creating four groups of counties. Across the United States, states vary 
widely in what they require sellers to disclose to buyers. Based on data 
compiled by the Natural Resource Defense Council, we grouped states 
by their disclosure laws or lack thereof. Using the Yale Climate Survey, 
we also grouped counties based on average responses to the question 
“Do you think global warming will harm you personally?” (Supplemen-
tary Fig. 5). Group A comprises counties with no disclosure laws and 
below median climate concern; Group B comprises counties with at 
least one form of disclosure law and below median climate concern; 
Group C comprises counties with no disclosure laws and above median 
climate concern; Group D comprises counties with at least one form of 
disclosure law and above median climate concern. Due to the relatively 
small sample size of properties remapped into the 100 yr flood zone, 
we were unable to group counties with more granularity.

This approach makes two key assumptions about the dynamics 
of flood risk capitalization among rezoned properties and properties 
located outside the SFHA. First, we assume that properties rezoned 
into the SFHA are representative of all properties located in the SFHA. 
While rezoned properties may be on the margins of the SFHA and have 
lower flood risk than average SFHA properties, rezoned properties may 
also be less adapted to flood risk than average SFHA properties, since 
the latter have been subject to floodplain building codes for years. 
Respectively, these two potential differences may simultaneously lead 
to under- and overestimation of flood risk capitalization.

Second, we assume that only properties currently located within 
the SFHA capitalize flood risk, whereas properties located outside the 
SFHA do not experience any discount despite their exposure to flood 
risk. We make this assumption based on the results of refs. 9,10,24, all of 
which find that location in the FEMA-designated 500 yr floodplain (that 
is, 0.2–1% annual probability of flooding) has no effect on property sale 
prices. We describe two alternative analyses that test the sensitivity of 
this assumption at the end of the Methods section.

Estimating property overvaluation
We calculated overvaluation of properties exposed to flood risk (that 
is, both SFHA and non-SFHA properties with flood losses greater than 
zero) as the difference between their estimated current fair market 

value and their efficient price (equation 4). For properties where the 
fair market value is less than the efficient price, we calculated overvalu-
ation as zero.

Overvaluationi = FairMarketValuei − EfficientPricei (4)

We estimated the current fair market value of properties using 
their most recent transaction price adjusted to the present using the 
Federal Housing Finance Agency’s House Price Index (FHFA HPI). For 
properties with no transaction data, we instead used their assessed 
value, similarly adjusted to the present using the FHFA HPI, depending 
on the year of assessment. We accounted for differences in assessment 
methods across counties by fitting simple linear regression models 
between adjusted transaction prices and adjusted assessed values for 
all transacted properties in a county. We then applied the estimated 
coefficient as a scalar to the assessed values.

We estimated the efficient prices of properties exposed to flood 
risk as the difference between their fair market value in the absence of 
any flood risk (RiskFreeMV) and the NPV of AALs between 2020 and 
2050 (equation 5). For properties where the NPV of AALs is greater 
than the RiskFreeMV, the efficient price is zero.

EfficientPricei = RiskFreeMVi − NPVi (5)

The use of AALs to determine efficient prices assumes that home-
buyers have complete information about properties’ exposure to 
flooding and price that risk according to the discounted value of future 
flood losses. Despite uncertainty in projections of future flood losses, 
this approach captures the potential cost of exposure to flood risk 
over the lifetime of a property more accurately than the current cost of 
NFIP premiums. In contrast to our estimates of AALs, NFIP premiums 
do not reflect future climate change, have been historically subsidized 
in many locations and have been based on FEMA flood maps, which 
are inaccurate and lack coverage in many parts of the United States. 
While some of these deficiencies in NFIP pricing have been addressed 
by Risk Rating 2.0, those data are not yet available at the property level. 
Further, given that housing markets have the potential to capitalize the 
total costs of flood risk under climate change, our estimates capture 
market overvaluation better than the costs of current NFIP premiums.

To calculate properties’ RiskFreeMV, we removed the empirical 
flood zone discounts (δ) estimated with the hedonic model (equation 
6). For example, if the fair market value for property i is US$500,000 
and the flood zone discount for group g is −5%, then the RiskFreeMV 
for property i is US$526,315. As discussed in the previous section, we 
assume that properties outside the SFHA do not capitalize flood risk 
and that their RiskFreeMV is the same as their current fair market value.

RiskFreeMVi = {
FairMarketValuei/(1 + δg), SFHA = 1

FairMarketValuei, SFHA = 0
(6)

Importantly, the use of AALs to estimate efficient property 
prices inevitably results in the underestimation of overvaluation. 
Beyond structural damages, flooding is also associated with damages 
to contents and loss of sentimental items, debris clean up, evacua-
tion expenses, and negative mental health impacts, none of which 
are included in the NPV of AAL estimates. While difficult to quantify, 
including these other forms of damage in the NPV calculation would 
invariably increase estimates of overvaluation.

Sensitivity and uncertainty analyses
In our main methods and results, we assume that properties located 
outside of the SFHA do not capitalize flood risk. However, particularly 
following recent flood events, exposure to flood risk may be temporar-
ily capitalized by properties outside of the SFHA in localized areas64. 
To test the sensitivity of our results to this initial assumption, we reran 
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the analysis with two alternative assumptions regarding flood risk 
capitalization and subsequent overvaluation.

In our first sensitivity analysis, we assume that all properties 
exposed to flood risk are discounted at the same rate as was esti-
mated for SFHA properties by the panel model described above. This 
provides an upper-bound estimate of non-SFHA capitalization and a 
lower-bound estimate of total overvaluation. Results under this alterna-
tive assumption are shown in Supplementary Figs. 11 and 14.

In our second sensitivity analysis, we implemented a 
cross-sectional regression model to identify flood risk capitalization 
among properties exposed to flood risk and that are located in the 
FEMA 100 yr flood zone, 500 yr flood zone or outside of any desig-
nated flood zone. While this approach allowed us to estimate flood 
risk capitalization among properties located outside of the SFHA, we 
prefer it less than the panel model because of how challenging it is to 
control for all the characteristics of a property that may be correlated 
with flood risk and prices. The results from this analysis are shown in 
Supplementary Figs. 8, 12 and 15.

For this alternative analysis, we estimated the effect of FEMA flood 
zone status (δ) on sale price (p) using a 6-level factor variable (FZit ∗ Riski) 
that combines flood zone categories (that is, 100 yr, 500 yr or outside) 
and binary exposure to flood risk (equation 7). Properties located 
outside of any flood zone and that are not exposed to flood risk serve 
as the reference group. Hit is a vector of property-specific variables that 
includes number of bedrooms, building area and the age of the prop-
erty at the time of sale; λ is a vector of estimated coefficients for these 
variables. Following ref. 40, we applied high-dimensional fixed effects, 
β, to control for a suite of location-specific characteristics (Xi). This 
term captures the interaction between a property’s block group, dis-
tance to coast bins (0 to 10 m, 10 to 400 m, >400 m), presence of lake 
and river frontage on the property and elevation bins (0 to 5 m, 5 to 
10 m, >100 m). We also applied fixed effects to control for seasonal 
market trends across states, τsq, and county-level market trends across 
years, ηct. We performed this estimation for sales within each subset of 
Groups A–D defined above. To calculate overvaluation, we changed 
any estimate of δ that is greater than zero (that is, a price premium) or 
not significantly different (P ≥ 0.05) to zero.

log (pit) = α + δgFZit ∗ Riski + 𝜆𝜆Hit + Xi + τsq + ηct + εit (7)

Separate from these two sensitivity analyses, we also used a Monte 
Carlo simulation to evaluate the uncertainty bounds in our estimates 
of overvaluation. For each iteration of the simulation (N = 1,000), we 
randomly sampled normal probability distribution functions fitted 
to the empirical flood zone discounts estimated by the panel model 
(see equation 3). We also assessed the sensitivity of overvaluation 
to the applied discount rate, comparing discount rates of 1, 3, 5 and 
7%, and inundation hazard scenarios. The low, mid and high hazard 
scenarios represent the 25th, 50th and 75th percentile estimates of the 
flood model simulations, respectively. Variation across flood model 
simulations is driven by uncertainty in global climate model outputs. 
In 2050, the 25th and 75th percentile estimates from the RCP 4.5 model 
roughly align with the mean estimates from the RCP 2.6 and 8.5 mod-
els. For more information on the uncertainty in flood model outputs, 
please see ref. 29. Results from the uncertainty analysis are shown in 
Supplementary Fig. 16.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The input datasets used for this analysis are either already publicly 
available or cannot be made available due to restrictive data sharing 
agreements.

Code availability
The code used for this analysis is available in a Zenodo repository at 
https://doi.org/10.5281/zenodo.7420416.

References
49. ZTRAX: Zillow transaction and assessor dataset. Zillow https://

www.zillow.com/research/ztrax/ (2021).
50. Nolte, C. High-resolution land value maps reveal underestimation 

of conservation costs in the United States. Proc. Natl Acad. Sci. 
USA 117, 29577–29583 (2020).

51. Wing, O. E. et al. Simulating historical flood events at the 
continental scale: observational validation of a large-scale 
hydrodynamic model. Nat. Hazards Earth Syst. Sci. 21,  
559–575 (2021).

52. First Street Foundation Flood Model (First Street Foundation, 
2020).

53. Trigg, M. et al. The credibility challenge for global  
fluvial flood risk analysis. Environ. Res. Lett. 11,  
094014 (2016).

54. Pollack, A. B., Sue Wing, I. & Nolte, C. Aggregation bias and its 
drivers in large-scale flood loss estimation: a Massachusetts 
case study. J. Flood Risk Manage. https://doi.org/10.1111/jfr3.12851 
(2022).

55. FEMA Benefit-Cost Analysis Re-engineering (BCAR): Flood Module 
Revision (FEMA, 2011).

56. Wing, O. E., Pinter, N., Bates, P. D. & Kousky, C. New insights into 
US flood vulnerability revealed from flood insurance big data. 
Nat. Commun. 11, 1444 (2020).

57. Hazus Inventory Technical Manual (FEMA, 2021).
58. Olsen, A. S., Zhou, Q., Linde, J. J. & Arnbjerg-Nielsen, K. 

Comparing methods of calculating expected annual  
damage in urban pluvial flood risk assessments. Water 7,  
255–270 (2015).

59. Beltrán, A., Maddison, D. & Elliott, R. The impact of flooding 
on property prices: a repeat-sales approach. J. Environ. Econ. 
Manage. 95, 62–86 (2019).

60. Gibson, M. & Mullins, J. T. Climate risk and beliefs in  
New York floodplains. J. Assoc. Environ. Resour. Econ. 7,  
1069–1111 (2020).

61. Miller, R. G. & Pinter, N. Flood risk and residential real‐estate 
prices: evidence from three US counties. J. Flood Risk Manage. 15, 
e12774 (2022).

62. Muller, N. Z. & Hopkins, C. A. Hurricane Katrina Floods New 
Jersey: The Role of Information in the Market Response to Flood 
Risk (National Bureau of Economic Research, 2019).

63. Shr, Y.-H. J. & Zipp, K. Y. The aftermath of flood zone remapping: 
the asymmetric impact of flood maps on housing prices. Land 
Econ. 95, 174–192 (2019).

64. Kousky, C. Learning from extreme events:  
risk perceptions after the flood. Land Econ. 86,  
395–422 (2010).

Acknowledgements
We thank P. Mulder, K. Hereid and R. Vaughn for providing 
thoughtful comments and feedback on earlier versions of the 
manuscript. We also thank the Wharton Risk Management and 
Decision Processes Center at the University of Pennsylvania 
and the Environmental Defense Fund for providing institutional 
support, and the Zillow Group for providing the Zillow Transaction 
and Assessment Dataset (ZTRAX). J.D.G. and C.K. were supported 
by the National Science Foundation under the Megalopolitan 
Coastal Transformation Hub (grant number ICER-2103754). The 
views expressed in this paper are solely the responsibility of the 
authors and should not be interpreted as reflecting the opinions 
of the Zillow Group, the National Science Foundation, the 

http://www.nature.com/natureclimatechange
https://doi.org/10.5281/zenodo.7420416
https://www.zillow.com/research/ztrax/
https://www.zillow.com/research/ztrax/
https://doi.org/10.1111/jfr3.12851


Nature Climate Change

Article https://doi.org/10.1038/s41558-023-01594-8

Megalopolitan Coastal Transformation Hub, the Federal Reserve 
Board of Governors or of any other person associated with the 
Federal Reserve System.

Author contributions
J.D.G., C.K., Y.L., A.B.P. and J.A.W. conceived and designed the 
experiments. J.D.G. and A.B.P. performed the experiments. J.D.G. 
analysed the data. J.D.G., C.N., A.B.P., J.R.P. and J.A.W. contributed 
materials/analysis tools. J.D.G., C.K., Y.L., A.B.P., J.R.P. and J.A.W. 
wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41558-023-01594-8.

Correspondence and requests for materials should be addressed to 
Jesse D. Gourevitch.

Peer review information Nature Climate Change thanks Katharine 
Mach, Amine Ouazad and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-023-01594-8
http://www.nature.com/reprints


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Jesse D. Gourevitch

Last updated by author(s): 12/08/2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data were collected for this analysis.

Data analysis All analyses were conducted using Python v3.9.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The input datasets used for this analysis are either already publicly available or cannot be made available due to restrictive data sharing agreements.



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender This information was not collected and was not applicable to our research.

Population characteristics This information was not collected and was not applicable to our research.

Recruitment This information was not collected and was not applicable to our research.

Ethics oversight This information was not collected and was not applicable to our research.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We calculate overvaluation of properties exposed to flood risk based on the difference between our estimates of their empirical and 
economically efficient price discounts. We estimate the empirical flood zone price discount using a repeat sales panel model, which 
controls for time-invariant characteristics of individual properties. This approach identifies the effect of rezoning properties into the 
Special Flood Hazard Area (SFHA; i.e., the 100-year flood zone) as the result of FIRM updates over time. We define the efficient price 
of properties exposed to flooding as the difference between property values in the absence of flood risk and the net present value 
(NPV) of average annual losses from flooding between 2020 and 2050, accounting for future impacts of climate change under RCP 
4.5. 

Research sample To build the panel model, we employ an extensively processed version of the Zillow ZTRAX database, a comprehensive dataset of 
property transactions in the US over the last 30 years, joined with newly consolidated historical FIRM layers.

Sampling strategy The ZTRAX database contains property transaction and tax assessment data for approximately 150 million parcels in over 3,100 
counties nationwide.

Data collection All data used in this analysis were collected by previous publications.

Timing The ZTRAX database includes property transactions between 1996 and 2021.

Data exclusions For a property to be included in the estimation sample, it must be outside of the SFHA in the old FIRM, it must have a known 
floodplain status in the new FIRM, and it must be sold more than once while its flood zone status is known. Sales that occur while the 
flood zone status is unknown are omitted from the dataset. 

Non-participation Not applicable.

Randomization Not applicable.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature portfolio  |  reporting sum
m

ary
M

arch 2021
Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Unpriced climate risk and the potential consequences of overvaluation in US housing markets

	Results

	Empirical flood zone discounts

	Magnitude and distribution of overvaluation

	Potential impacts of overvaluation among demographic groups

	Potential fiscal impacts of overvaluation


	Discussion

	Future scenarios for adaptation responses mediating the magnitude and distribution of flood-related costs


	Online content

	Fig. 1 Flood risk capitalization and property overvaluation by county.
	Fig. 2 Distributions of overvaluation by property location.
	Fig. 3 Distribution of property overvaluation among demographic groups.
	Fig. 4 Local government vulnerability to loss of revenue due to property devaluation.




